Part Number Hot Search : 
2SC2525 P50N06 LT6610 TDF20M 50222 68HC91 R1620 L78S09CV
Product Description
Full Text Search
 

To Download ADADC85SZ-12 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Fast, Complete 12-Bit A/D Converters AD ADC84/AD ADC85
FEATURES
PERFORMANCE Complete 12-bit A/D converter with reference and clock Fast successive approximation conversion: 10 s or 5 s Buried Zener reference for long-term stability and low Gain TC: 10 ppm/C Max nonlinearity: < 0.012% Low power: 880 mW typ Low chip count--high reliability Industry-standard pinout Z models for 12 V operation available MIL-STD-883B processing available VERSATILITY Negative true parallel logic outputs Short cycle capability Precision +6.3 V reference for external applications
PRODUCT DESCRIPTION
The AD ADC84/AD ADC85 series devices are high speed, low cost 12-bit successive approximation analog-to-digital converters that include an internal clock, reference, and comparator. Its hybrid IC design utilizes MSI digital and linear monolithic chips in conjunction with a 12-bit monolithic DAC to provide modular performance and versatility with IC size, price, and reliability. Important performance characteristics of the AD ADC84/ AD ADC85 series include maximum linearity error of 0.012%; gain TC below 15 ppm/C at 25C; typical power dissipation of 880 mW; and conversion time of less than 10 s for the 12-bit versions. Of considerable significance in severe and aerospace applications is the guaranteed performance from -55C to +125C of the AD ADC85S, which is also available with environmental screening. Monotonic operation of the feedback DAC guarantees no missing codes over temperature ranges of 0C to +70C, -25C to +85C, and -55C to +125C. The design of the AD ADC84/AD ADC85 includes scaling resistors that provide analog input signal ranges of 2.5 V, 5 V, 10 V, 0 V to +5 V, or 0 V to +10 V. The 6.3 V precision reference, which can be used for external applications, and the input buffer amplifier add flexibility and value. All digital signals are fully DTL and TTL compatible, and the data output is negative-true and available in parallel form. The AD ADC84/AD ADC85 are available in a performance grade specified for 12-bit accuracy (0.012% FSR max) with 10 s maximum conversion time.
Figure 1. Functional Block Diagram
The AD ADC84 and AD ADC85C are specified for operation over the 0C to +70C temperature range. The AD ADC85 and AD ADC85S are specified for the -25C to +85C and -55C to +125C ranges, respectively. The serial output function is no longer supported on the AD ADC84/AD ADC85 after date code 9623.
PRODUCT HIGHLIGHTS
1. The AD ADC84/ AD ADC85 series devices are complete 12-bit ADCs. No external components are required to perform a conversion. The AD ADC84/ AD ADC85 directly replaces other devices of this type with significant increases in performance. The fast conversion rates of the AD ADC84 and AD ADC85 (10 s) make them an excellent choice for applications requiring high system throughput rates. The internal buried Zener reference is laser trimmed to 6.3 V 0.1% and 10 ppm/C typical TC. The reference is available externally and can provide up to 1 mA. The integrated package construction provides high quality and reliability with small size and weight. The monolithic 12-bit feedback DAC is used for reduced chip count and higher reliability. The AD ADC85S/883B comes processed to MIL-STD-883, Class B requirements.
2. 3.
4.
5. 6.
7.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 (c) 2003 Analog Devices, Inc. All rights reserved.
AD ADC84/AD ADC85 TABLE OF CONTENTS
Specifications..................................................................................... 3 Typical Performance Characteristics ............................................. 5 Functional Description .................................................................... 6 Offset Adjustment ........................................................................ 6 Gain Adjustment........................................................................... 6 Theory of Operation .................................................................... 6 Timing............................................................................................ 6 Digital Output Data ..................................................................... 7 Input Scaling ..................................................................................8 Input Voltage Range and LSB Values ..........................................8 Calibration......................................................................................9 Grounding ......................................................................................9 Clock Rate Control Alternate Connections............................ 10 Microprocessor Interfacing....................................................... 10 Outline Dimensions ....................................................................... 11 Ordering Guide .......................................................................... 11
REVISION HISTORY
Revision B 11/03--Data Sheet changed from Rev. A to Rev. B Removed AD5240...............................................................Universal Updated format...................................................................Universal Added text to PRODUCT DESCRIPTION .................................. 1 Updated OUTLINE DIMENSIONS ............................................ 11
Rev. B | Page 2 of 12
AD ADC84/AD ADC85 SPECIFICATIONS
Table 1. Typical @ 25C, 15 V and +5 V, unless otherwise noted
Model RESOLUTION ANALOG INPUTS Voltage Ranges Bipolar Unipolar Impedance (Direct Input) 0 V to +5 V, 2.5 V 0 V to +10 V, 5 V 10 V Buffer Amplifier1 Impedance (Min) Bias Current Settling Time to 0.01% for 20 V Step DIGITAL INPUTS2 Convert Command Logic Loading TRANSFER CHARACTERISTICS ERROR Gain Error3 Offset Error Unipolar Bipolar5 Linearity Error (max)6 Inherent Quantization Error Differential Linearity Error No Missing Codes Temperature Range Power Supply Sensitivity 15 V +5 V DRIFT Specification Temperature Range Gain (Max) Offset Unipolar Bipolar (Max) Linearity Monotonicity CONVERSION SPEED (MAX)
3 5
AD ADC84 12
AD ADC85C 12
AD ADC85 12
AD ADC85S 12
Unit Bits
2.5, 5, 10 0 to +5, 0 to +10 2.5 (20%) 5 (20%) 10 (20%) 100 50 2 Positive Pulse 100 ns Min Trailing Edge Initiates Conversion 1 0.1 (0.25% max) Adjustable to Zero 0.05 (0.2% max) 0.1 (0.25% max) 0.012 0.5 0.5 0 to +70 0.004 0.001 0 to +70 30 3 15 3 Guaranteed 10
* * * * * * * * * * * * * * * * * 0 to +70 * * * 25 * 12 * * *
* * * * * * * * * * * * * * * * * -25 to +85 * * -25 to +85 15 * 7 2 * *
* * * * * * * * * * * * * * * * * -55 to +125 * * -55 to +125 25 5 max 10 * * *
V V k k k M nA s
TTL Load % % of FSR4 % of FSR % of FSR LSB LSB C % of FSR/% V % of FSR/% V C ppm/C ppm/C ppm/C ppm/C s
Rev. B | Page 3 of 12
AD ADC84/AD ADC85
Model DIGITAL OUTPUT (All Codes Complementary) Parallel Output Codes7 Unipolar Bipolar Output Drive Status Status Output Drive Internal Clock Clock Output Drive Frequency INTERNAL REFERENCE VOLTAGE Maximum External Current (with No Degradation of Specifications) Tempco of Drift (Max) POWER REQUIREMENTS Rated Voltages Range for Rated Accuracy Z Models8 Supply Drain +15 V -15 V +5 V Total Power Dissipation TEMPERATURE RANGE Specification Operating (Derated Specs) Storage PACKAGE OPTION9 DH-32F *Specifications same as AD ADC84.
1 2
AD ADC84
AD ADC85C
AD ADC85
AD ADC85S
Unit
CSB COB, CTC 2 Logic 1 during Conversion 2 2 1.9/1.22 6.3/15 mV max 1.0 20 max +5, 15 +4.75 to +5.25 and 13.5 to -16.5 +4.75 to +5.25 and 11.4 to -16.5 25 Max 35 Max 140 Max 1500 Max 0 to +70 -25 to +85 -55 to +125 Ceramic
* * * * * * * * * 10 typ * * * * * * * * * * Ceramic
* * * * * * * * * 5 typ * * * * * * * -25 to +85 -55 to +125 * Ceramic
* * * * * * * * * 5 typ * * * * * * * -55 to +125 -55 to +125 * Ceramic
TTL Loads TTL Loads TTL Loads MHz V mA ppm/C V V V mA mA mA mW C C C
Buffer settling time adds to conversion speed when buffer is connected to input. DTL/TTL compatible Logic 0 = 0.8 V max, Logic 1 = 2.0 V min for digital output, Logic 0 = 0.4 V max, Logic 1 = 2.4 V min. 3 Adjustable to zero. 4 FSR means full-scale range. 5 Guaranteed at VIN = 0 V. 6 Error shown is the same as 1/2 LSB max error in % of FSR. 7 See Table 2. 8 For 12 V operation, add Z to model number. Input range limited to a maximum of 5 V. 9 For package outline information, see Outline Dimensions section.
Rev. B | Page 4 of 12
AD ADC84/AD ADC85 TYPICAL PERFORMANCE CHARACTERISTICS
Figure 2. Linearity Error vs. Conversion Speed
Figure 4. Change in Differential Linearity vs. Conversion Speed
Figure 3. Gain Drift Error (%FSR) vs. Temperature Figure 5. Conversion Speed vs. Control Voltage
Rev. B | Page 5 of 12
AD ADC84/AD ADC85 FUNCTIONAL DESCRIPTION
OFFSET ADJUSTMENT
The zero adjust circuit consists of a potentiometer connected across VS with its slider connected through a 1.8 M resistor to Comparator Input Pin 22 for all ranges. As shown in Figure 6, the tolerance of this fixed resistor is not critical, and a carbon composition type is generally adequate. Using a carbon composition resistor having a -1200 ppm/C tempco contributes a worst-case offset tempco of 8 x 244 x 10-6 x 1200 ppm/C = 2.3 ppm/C of FSR, if the OFFSET ADJ potentiometer is set at either end of its adjustment range. Since the maximum offset adjustment required is typically no more than 4 LSB, use of a carbon composition offset summing resistor typically contributes no more than 1 ppm/C of FSR offset tempco. An alternate gain adjust circuit which contributes negligible gain tempco if metal film resistors (Tempco < 100 ppm/C) are used is shown in Figure 9.
Figure 9. Low Tempco Gain Adjustment Circuit
THEORY OF OPERATION
On receipt of a CONVERT START command, the AD ADC84/ AD ADC85 converts the voltage as its analog input into an equivalent 12-bit binary number. This conversion is accomplished as follows: The 12-bit successive approximation register (SAR) has its 12-bit outputs connected both to the device bit output pins and to the corresponding bit inputs of the feedback DAC. The analog input is successively compared to the feedback DAC output, one bit at a time (MSB first, LSB last). The decision to keep or reject each bit is then made at the completion of each bit comparison period, depending on the state of the comparator at that time.
Figure 6. Offset Adjustment Circuit
An alternate offset adjust circuit, which contributes negligible offset tempco if metal film resistors (tempco <100 ppm/C) are used, is shown in Figure 7.
TIMING
The timing diagram is shown in Figure 10. Receipt of a CONVERT START signal sets the STATUS flag, indicating conversion in progress. This, in turn, removes the inhibit applied to the gated clock, permitting it to run through 13 cycles. All the SAR parallel bits, STATUS flip-flops, and the gated clock inhibit signal are initialized on the trailing edge of the CONVERT START signal. At time t0, Bit 1 is reset and Bit 2 to Bit 12 are set unconditionally. At t1, the Bit 1 decision is made (keep) and Bit 2 is unconditionally reset. At t2, the Bit 2 decision is made (keep) and Bit 3 is reset unconditionally. This sequence continues until the Bit 12 (LSB) decision (keep) is made at t12. After a 40 ns delay period, the STATUS flag is reset, indicating that the conversion is complete and that the parallel output data is valid. Resetting the STATUS flag restores the gated clock inhibit signal, forcing the clock output to the Logic 0 state. Corresponding parallel data bits become valid on the same positive-going clock edge (see Figure 10). Incorporation of the 40ns delay guarantees that the parallel data is valid at the Logic 1 to 0 transition of the STATUS flag, permitting parallel data transfer to be initiated by the trailing edge of the STATUS signal.
Figure 7. Low Tempco Zero Adjustment Circuit
In either zero adjust circuit, the fixed resistor connected to Pin 22 should be located close to this pin to keep the pin connection runs short. (Comparator Input Pin 22 is quite sensitive to external noise pickup).
GAIN ADJUSTMENT
The gain adjust circuit consists of a potentiometer connected across VS with its slider connected through a 10M resistor to the Gain Adjust pin 27 as shown in Figure 8.
Figure 8. Gain Adjustment Circuit
Rev. B | Page 6 of 12
AD ADC84/AD ADC85
NOTES 1. THE CONVERT START PULSE WIDTH IS 100ns MIN AND MUST REMAIN LOW DURING A CONVERSION. THE CONVERSION IS INITIATED BY THE "TRAILING EDGE" OF THE CONVERT COMMAND. 2. 10s FOR 12 BITS (AD ADC84/AD ADC85). 3. MSB DECISION. 4. LSB DECISION 20ns PRIOR TO THE STATUS GOING LOW. *BIT DECISIONS.
Figure 10. Timing Diagram (Binary Code 011001110110)
DIGITAL OUTPUT DATA
Parallel data from TTL storage registers are in negative true form. Parallel data coding is complementary binary for unipolar ranges and either complementary offset binary or complementary twos complement binary, depending on whether BIT 1 (Pin 12) or its logical inverse BIT 1 (Pin 13) is used as the MSB. Parallel data becomes valid approximately 40 ns before the STATUS flag returns to Logic "0", permitting parallel data transfer to be clocked on the "1" to "0" transition of the STATUS flag. Parallel data outputs change state on positive-going clock edges. There are 13 negative-going clock edges in the complete 12-bit conversion cycle, as shown in Figure 10. The first edge shifts an invalid bit into the register, which is shifted out on the 13th negative-going clock edge.
Short Cycle Input
A short cycle input, Pin 14, permits the timing cycle shown in Figure 10 to be terminated after any number of desired bits has been converted, permitting somewhat shorter conversion times in applications not requiring full 12-bit resolution. When 12-bit resolution is required, Pin 14 is connected to +5 V (Pin 16). When 10-bit resolution is required, Pin 14 is connected to Bit 11 output Pin 2. The conversion cycle then terminates, and the STATUS flag resets after the Bit 10 decision (t10 + 40 ns in timing diagram of Figure 10). Short cycle pin connections and associated maximum 12-, 10-, and 8-bit conversion times are summarized in Table 2.
Rev. B | Page 7 of 12
AD ADC84/AD ADC85
INPUT SCALING
The AD ADC84/AD ADC85 inputs should be scaled as close to the maximum input signal range as possible in order to utilize the maximum signal resolution of the A/D converter. Connect the input signal as shown in Table 3. See Figure 11 for circuit detail.
Figure 11. Input Scaling Circuit
Table 2. Short Cycle Connections
Connect Short Cycle Pin 14 to Pin 16 2 4 Connect Clock Rate Control Pin 17 to Pin 15 16 28 Bits 12 10 8 Resolution (% FSR) 0.024 0.100 0.390 AD ADC84/AD ADC85 ConversionTime (s) 10 (5) 8.5 (4.1) 6.8 (3.3) Status Flag Reset t12 + 40 ns t10 + 40 ns t8 + 40 ns
Table 3. Input Scaling Connections
Input Signal Range 10 V 5 V 2.5 V 0 V to +5 V 0 V to +10 V Output Code COB or CTC COB or CTC COB or CTC CSB CSB Connect Pin 23 to Pin 22 22 22 26 26 Connect Pin 25 to Input Signal Open Pin 22 Pin 22 Open For Direct Input Connect Input Signal to Pin 25 24 24 24 24 Input Pin 30 Connect Pin 29 to Pin 25 24 24 24 24
INPUT VOLTAGE RANGE AND LSB VALUES
Table 4. Input Voltages and Code Definition
Analog Input Voltage Range Code Designation One Least Significant Bit (LSB) 10 V COB1 or CTC2
FSR 2n 20V 2n
5 V COB or CTC
10V 2n
2.5 V COB or CTC
5V 2n
0 V to +10 V CSB3
10V 2n
0 V to +5 V CSB
5V 2n
n=8 n = 10 n = 12 Transition Values MSB LSB 000 . . . 0004 011 . . . 111 111 . . . 110
78.13 mV 19.53 mV 4.88 mV
39.06 mV 9.77 mV 2.44 mV
19.53 mV 4.88 mV 1.22 mV
39.06 mV 9.77 mV 2.44 mV
19.53 mV 4.88 mV 1.22 mV
+Full Scale Mid Scale -Full Scale
+10 V -3/2 LSB 0 -10 V +1/2 LSB
+5 V -3/2 LSB 0 -5 V +1/2 LSB
+2.5 -3/2 LSB 0 -2.5 V +1/2 LSB
+10 V -3/2 LSB +5 V 0 V +1/2 LSB
+5 V -3/2 LSB +2.5 V 0 V +1/2 LSB
1 2
COB = Complementary Offset Binary. CTC = Complementary Twos Complement - obtained by using the complement of the most significant bit (MSB). MSB is available to Pin 13. 3 CSB = Complementary Straight Binary. 4 Voltages given are the nominal value for transition to the code specified.
Rev. B | Page 8 of 12
AD ADC84/AD ADC85
CALIBRATION
External ZERO ADJ and GAIN ADJ potentiometers, connected as shown in Figure 12 and Figure 13, are used for device calibration. To prevent interaction of these two adjustments, zero is always adjusted first and then gain. Zero is adjusted with the analog input near the most negative end of the analog range (0 for unipolar and -FS for bipolar input ranges). Gain is adjusted with the analog input near the most positive end of the analog range.
-10 V to +10 V Range
Set analog input to -9.9951 V; adjust zero for 111111111110 digital output (complementary offset binary) code. Set analog input to +9.9902 V; adjust Gain for 000000000001 digital output (complementary offset binary) code. Half-scale calibration check: set input to 0.0000V; digital output (complementary offset binary) code should be 011111111111.
Other Ranges
Representative digital coding for 0 to +10 V and -10 V to +10 V ranges is given above. Coding relationships and calibration points for 0 to +5 V, -2.5 V to +2.5 V, and -5 V to +5 V ranges can be found by halving the corresponding code equivalents listed for the 0 to +10 V and -10 V to +10 V ranges, respectively. Zero and full-scale calibration can be accomplished to a precision of approximately 1/4 LSB using the static adjustment procedure described above. By summing a small sine or triangular-wave voltage with the signal applied to the analog input, the output can be cycled through each of the calibration codes of interest to more accurately determine the center (or end points) of each discrete quantization level.
GROUNDING
Figure 12. Analog and Power Connections for Unipolar 0 to +10 V Input Range with Buffer Follower
Many data acquisition components have two or more ground pins which are not connected together within the device. These grounds are usually referred to as the Logic Power Return, Analog Common (Analog Power return), and Analog Signal Ground. These grounds must be tied together at one point, usually at the system power-supply ground. Ideally, a single solid ground would be desirable. However, since current flows through the ground wires and etch stripes of the circuit cards, and since these paths have resistance and inductance, hundreds of millivolts can be generated between the system ground point and the ground pin of the AD ADC84/ AD ADC85. Separate ground returns should be provided to minimize the current flow in the path from sensitive points to the system ground point. In this way, supply currents and logic-gate return currents are not summed into the same return path as analog signals where they would cause measurement errors. Each of the AD ADC84/ AD ADC 85 supply terminals should be capacitively decoupled as close to the device as possible. A large value capacitor such as 1 F in parallel with a 0.1 F capacitor is usually sufficient. Analog supplies are bypassed to the Analog Power Return pin and the logic supply is bypassed to the Logic Power Return pin.
Figure 13. Analog and Power Connections for Bipolar -10 V to +10 V Input Range with Buffer Follower
0 to +10 V Range
Set analog input to +1 LSB = +0.0024V. Adjust Zero for digital output = 111111111110. Zero is now calibrated. Set analog input to +FSR - 2 LSB = +9.9952V. Adjust gain for 000000000001 digital output code; full-scale (gain) is now calibrated. Halfscale calibration check: set analog input to +5.0000 V; digital output code should be 011111111111.
Rev. B | Page 9 of 12
AD ADC84/AD ADC85
CLOCK RATE CONTROL ALTERNATE CONNECTIONS
If adjustment of the CLOCK RATE is desired for faster conversion speeds, the CLOCK RATE CONTROL may be connected to an external multiturn trim potentiometer with a TCR of 100 ppm/C or less as shown in Figure 14 and Figure 15. If the potentiometer is connected to -15 V, conversion time can be increased as shown in Figure 5. If these adjustments are used, delete the connections shown in Table 2 for Pin 17. See Figure 2 for nonlinearity error versus conversion speed and Figure 5 for the effect of the control voltage on clock speed. significant bits in one byte and the 4 LSBs in the high nibble of another byte. The data now represents the fractional binary number relating the analog signal to the full-scale voltage. An advantage to this organization is that the most-significant eight bits can be read by the processor as a coarse indication of the true signal value. The full 12-bit word can then be read only when all 12 bits are needed. This allows faster and more efficient control of a process. Figure 16 shows a typical connection of 8085-type bus, using a left-justified data format for unipolar inputs. Status polling is optional, and can be read simultaneously with the 4LSBs. If it is desired to right-justify the data, pins 1 through 12 of the ADADC84/AD ADC85 should be reversed, as well as the connections to the data bus high and low byte address signals. When dealing with bipolar inputs (5V, 10V ranges), using the MSB directly yields a complementary offset binary-coded output. If complementary twos complement coding is desired, it can be produced be substituting MSB (Pin 13) for the MSB. This facilitates the arithmetic operation which are subsequently performed on the ADC output data.
Figure 14. 12-Bit Clock Rate Control Optional Fine Adjust
Figure 15. 8-Bit Clock Rate Control Optional Fine Adjust
MICROPROCESSOR INTERFACING
The fast conversion times of the AD ADC84/AD ADC85 suggests several methods of interface to microprocessors. In systems where the ADC is used for high sampling rates on a single signal which is to be digitally processed, CPU-controlled conversion may be inefficient due to the slow cycle times of most microprocessors. It is generally preferable to perform conversions independently, inserting the resultant digital data directly into memory. This can be done using direct memory access (DMA), which is totally transparent to the CPU. Interface to user-designed DMA hardware is facilitated by the guaranteed data validity on the falling edge of the EOC signal. Clearly, 12 bits of data must be broken up for interface to a 8-bit wide data bus. There are two possible formats: right-justified and left-justified. In a right-justified system, the least significant 8 bits occupy one byte and the four MSBs reside in the low nibble of another byte. This format is useful when the data from the ADC is being treated as a binary number between 0 and 4095. The left-justified format supplies the eight most-
Figure 16. AD ADC84/AD ADC85 - 8085A Interface Connections
Rev. B | Page 10 of 12
AD ADC84/AD ADC85 OUTLINE DIMENSIONS
0.005 (0.13) MIN
ALL FOUR CORNERS 32
0.080 (2.03) MAX
ALL FOUR CORNERS 17
1
16
PIN 1 0.060 (1.52) 0.040 (1.02)
1.640 (41.66) 1.584 (40.64)
0.230 (5.84) MAX
0.905 (22.99) 0.880 (22.35)
0.180 (4.57) MIN
0.020 (0.51) 0.016 (0.41)
0.100 (2.54) 0.055 (1.39) BSC 0.045 (1.14)
0.120 (3.05) MIN
0.910 (23.11) 0.890 (22.61)
0.012 (0.31) 0.009 (0.23)
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
Figure 17. 32-Lead Side Brazed Ceramic DIP [SBDIP/H] (DH-32F)
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
ORDERING GUIDE
Model1 ADADC84-122 ADADC84Z-122 ADADC85C-122 ADADC85-12 ADADC85Z-122 ADADC85S-12 ADADC85SZ-12 ADADC85S12/883B ADADC85SZ12/883 Operation Voltage (V) 15 12 15 15 12 15 12 15 12 Linearity (%) 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 Temperature Range 0C to +70C 0C to +70C 0C to +70C -25C to +85C -25C to +85C -55C to +125C -55C to +125C -55C to +125C -55C to +125C Gain TC (ppm/C) 30 30 25 15 15 25 25 25 25 Conversion Time (s) 10 10 10 10 10 10 10 10 10
1 For complete model number, suffixes must be added for "Z" option (12 V operation), linearity. The following guide shows the proper suffix order: AD ADC(*)(**)-(***), where * = Model Number, ** = Z Version Designator, and *** = Linearity. Typical Part Numbers: AD ADC84-12, AD ADC85SZ-12. 2 Last Time Buy.
Rev. B | Page 11 of 12
AD ADC84/AD ADC85 NOTES
(c) 2003 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C03262-0-11/03(B)
Rev. B | Page 12 of 12
This datasheet has been download from: www..com Datasheets for electronics components.


▲Up To Search▲   

 
Price & Availability of ADADC85SZ-12

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X